Home > Numerical methods calculators > Numerical Integration using Simpson's 3/8 Rule example

3. Simpson's 3/8 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

6. Example-6 (`x^3-2x+1`)
(Previous example)
4. Boole's rule
(Next method)

7. Example-7 (`2x^3-4x+1`)





4. Find Solution of an equation 2x^3-4x+1 using Simpson's 3/8 rule
x1 = 2 and x2 = 4
Step value (h) = 0.5


Solution:
Equation is `f(x)=2x^3-4x+1`.

The value of table for `x` and `y`

x22.533.54
y922.254372.75113

Method-1:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`

`int y dx=(3xx0.5)/8 [(9 +113)+2xx(72.75)+3xx(22.25+43)]`

`int y dx=(3xx0.5)/8 [(9 +113)+2xx(72.75)+3xx(65.25)]`

`int y dx=(3xx0.5)/8 [(122)+(145.5)+(195.75)]`

`int y dx=86.8594`

Solution by Simpson's `3/8` Rule is `86.8594`



Method-2:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`

`y_0=9`

`3y_1=3*22.25=66.75`

`3y_2=3*43=129`

`2y_3=2*72.75=145.5`

`y_4=113`

`int y dx=(3xx0.5)/8 *(9+66.75+129+145.5+113)`

`int y dx=(3xx0.5)/8 *(463.25)`

`int y dx=86.8594`

Solution by Simpson's `3/8` Rule is `86.8594`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Example-6 (`x^3-2x+1`)
(Previous example)
4. Boole's rule
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.