4. Find Solution of an equation 2x^3-4x+1 using Simpson's 3/8 rule
x1 = 2 and x2 = 4
Step value (h) = 0.5Solution:Equation is `f(x)=2x^3-4x+1`.
The value of table for `x` and `y`
| x | 2 | 2.5 | 3 | 3.5 | 4 |
|---|
| y | 9 | 22.25 | 43 | 72.75 | 113 |
|---|
Method-1:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`
`int y dx=(3xx0.5)/8 [(9 +113)+2xx(72.75)+3xx(22.25+43)]`
`int y dx=(3xx0.5)/8 [(9 +113)+2xx(72.75)+3xx(65.25)]`
`int y dx=(3xx0.5)/8 [(122)+(145.5)+(195.75)]`
`int y dx=86.8594`
Solution by Simpson's `3/8` Rule is `86.8594`
Method-2:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`
`y_0=9`
`3y_1=3*22.25=66.75`
`3y_2=3*43=129`
`2y_3=2*72.75=145.5`
`y_4=113`
`int y dx=(3xx0.5)/8 *(9+66.75+129+145.5+113)`
`int y dx=(3xx0.5)/8 *(463.25)`
`int y dx=86.8594`
Solution by Simpson's `3/8` Rule is `86.8594`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then