Home > Numerical methods calculators > Numerical Integration using Simpson's 3/8 Rule example

3. Simpson's 3/8 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

2. Simpson's 1/3 rule
(Previous method)
2. Example-2 (table data)
(Next example)

1. Formula & Example-1 (table data)





Formula
3. Simpsons `3/8` Rule
`int y dx = (3h)/8 (y_0 + 2(y_3 + y_6 + ... + y_(n-3)) + 3(y_1 + y_2 + y_4 + y_5 + ... + y_(n-2)+y_(n-1)) + y_n)`

Examples
1. Find Solution using Simpson's 3/8 rule
xf(x)
1.44.0552
1.64.9530
1.86.0436
2.07.3891
2.29.0250


Solution:
The value of table for `x` and `y`

x1.41.61.822.2
y4.05524.9536.04367.38919.025

Method-1:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`

`int y dx=(3xx0.2)/8 [(4.0552 +9.025)+2xx(7.3891)+3xx(4.953+6.0436)]`

`int y dx=(3xx0.2)/8 [(4.0552 +9.025)+2xx(7.3891)+3xx(10.9966)]`

`int y dx=(3xx0.2)/8 [(13.0802)+(14.7782)+(32.9898)]`

`int y dx=4.5636`

Solution by Simpson's `3/8` Rule is `4.5636`



Method-2:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`

`y_0=4.0552`

`3y_1=3*4.953=14.859`

`3y_2=3*6.0436=18.1308`

`2y_3=2*7.3891=14.7782`

`y_4=9.025`

`int y dx=(3xx0.2)/8 *(4.0552+14.859+18.1308+14.7782+9.025)`

`int y dx=(3xx0.2)/8 *(60.8482)`

`int y dx=4.5636`

Solution by Simpson's `3/8` Rule is `4.5636`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Simpson's 1/3 rule
(Previous method)
2. Example-2 (table data)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.