Formula
3. Simpsons `3/8` Rule
`int y dx = (3h)/8 (y_0 + 2(y_3 + y_6 + ... + y_(n-3)) + 3(y_1 + y_2 + y_4 + y_5 + ... + y_(n-2)+y_(n-1)) + y_n)`
|
Examples
1. Find Solution using Simpson's 3/8 rule
| x | f(x) |
| 1.4 | 4.0552 |
| 1.6 | 4.9530 |
| 1.8 | 6.0436 |
| 2.0 | 7.3891 |
| 2.2 | 9.0250 |
Solution:The value of table for `x` and `y`
| x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
|---|
| y | 4.0552 | 4.953 | 6.0436 | 7.3891 | 9.025 |
|---|
Method-1:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`
`int y dx=(3xx0.2)/8 [(4.0552 +9.025)+2xx(7.3891)+3xx(4.953+6.0436)]`
`int y dx=(3xx0.2)/8 [(4.0552 +9.025)+2xx(7.3891)+3xx(10.9966)]`
`int y dx=(3xx0.2)/8 [(13.0802)+(14.7782)+(32.9898)]`
`int y dx=4.5636`
Solution by Simpson's `3/8` Rule is `4.5636`
Method-2:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`
`y_0=4.0552`
`3y_1=3*4.953=14.859`
`3y_2=3*6.0436=18.1308`
`2y_3=2*7.3891=14.7782`
`y_4=9.025`
`int y dx=(3xx0.2)/8 *(4.0552+14.859+18.1308+14.7782+9.025)`
`int y dx=(3xx0.2)/8 *(60.8482)`
`int y dx=4.5636`
Solution by Simpson's `3/8` Rule is `4.5636`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then