Home > Numerical methods calculators > Numerical Integration using Simpson's 3/8 Rule example

3. Simpson's 3/8 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

3. Example-3 (table data)
(Previous example)
5. Example-5 (`f(x)=1/(x+1)`)
(Next example)

4. Example-4 (`f(x)=1/x`)





1. Find Solution of an equation 1/x using Simpson's 3/8 rule
x1 = 1 and x2 = 2
Step value (h) = 0.25


Solution:
Equation is `f(x)=(1)/(x)`.

The value of table for `x` and `y`

x11.251.51.752
y10.80.66670.57140.5

Method-1:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`

`int y dx=(3xx0.25)/8 [(1 +0.5)+2xx(0.5714)+3xx(0.8+0.6667)]`

`int y dx=(3xx0.25)/8 [(1 +0.5)+2xx(0.5714)+3xx(1.4667)]`

`int y dx=(3xx0.25)/8 [(1.5)+(1.1429)+(4.4)]`

`int y dx=0.6603`

Solution by Simpson's `3/8` Rule is `0.6603`



Method-2:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`

`y_0=1`

`3y_1=3*0.8=2.4`

`3y_2=3*0.6667=2`

`2y_3=2*0.5714=1.1429`

`y_4=0.5`

`int y dx=(3xx0.25)/8 *(1+2.4+2+1.1429+0.5)`

`int y dx=(3xx0.25)/8 *(7.0429)`

`int y dx=0.6603`

Solution by Simpson's `3/8` Rule is `0.6603`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 (table data)
(Previous example)
5. Example-5 (`f(x)=1/(x+1)`)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.