Formula
2. Simpsons `1/3` Rule
`int y dx = h/3 (y_0 + 4(y_1 + y_3 + y_5 + ... + + y_(n-1)) + 2(y_2 + y_4 + y_6 + ... + y_(n-2)) + y_n)`
|
Examples
1. Find Solution using Simpson's 1/3 rule
| x | f(x) |
| 1.4 | 4.0552 |
| 1.6 | 4.9530 |
| 1.8 | 6.0436 |
| 2.0 | 7.3891 |
| 2.2 | 9.0250 |
Solution:The value of table for `x` and `y`
| x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
|---|
| y | 4.0552 | 4.953 | 6.0436 | 7.3891 | 9.025 |
|---|
Method-1:Using Simpsons `1/3` Rule
`int y dx=h/3 [(y_0+y_4)+4(y_1+y_3)+2(y_2)]`
`int y dx=0.2/3 [(4.0552 +9.025)+4xx(4.953+7.3891)+2xx(6.0436)]`
`int y dx=0.2/3 [(4.0552 +9.025)+4xx(12.3421)+2xx(6.0436)]`
`int y dx=0.2/3 [(13.0802)+(49.3684)+(12.0872)]`
`int y dx=4.9691`
Solution by Simpson's `1/3` Rule is `4.9691`
Method-2:Using Simpsons `1/3` Rule
`int y dx=h/3 [y_0+4y_1+2y_2+4y_3+y_4]`
`y_0=4.0552`
`4y_1=4*4.953=19.812`
`2y_2=2*6.0436=12.0872`
`4y_3=4*7.3891=29.5564`
`y_4=9.025`
`int y dx=0.2/3*(4.0552+19.812+12.0872+29.5564+9.025)`
`int y dx=0.2/3*(74.5358)`
`int y dx=4.9691`
Solution by Simpson's `1/3` Rule is `4.9691`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then