Home > Numerical methods calculators > Numerical Integration using Simpson's 1/3 Rule example

2. Simpson's 1/3 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

1. Trapezoidal rule
(Previous method)
2. Example-2 (table data)
(Next example)

1. Formula & Example-1 (table data)





Formula
2. Simpsons `1/3` Rule
`int y dx = h/3 (y_0 + 4(y_1 + y_3 + y_5 + ... + + y_(n-1)) + 2(y_2 + y_4 + y_6 + ... + y_(n-2)) + y_n)`

Examples
1. Find Solution using Simpson's 1/3 rule
xf(x)
1.44.0552
1.64.9530
1.86.0436
2.07.3891
2.29.0250


Solution:
The value of table for `x` and `y`

x1.41.61.822.2
y4.05524.9536.04367.38919.025

Method-1:
Using Simpsons `1/3` Rule

`int y dx=h/3 [(y_0+y_4)+4(y_1+y_3)+2(y_2)]`

`int y dx=0.2/3 [(4.0552 +9.025)+4xx(4.953+7.3891)+2xx(6.0436)]`

`int y dx=0.2/3 [(4.0552 +9.025)+4xx(12.3421)+2xx(6.0436)]`

`int y dx=0.2/3 [(13.0802)+(49.3684)+(12.0872)]`

`int y dx=4.9691`

Solution by Simpson's `1/3` Rule is `4.9691`



Method-2:
Using Simpsons `1/3` Rule

`int y dx=h/3 [y_0+4y_1+2y_2+4y_3+y_4]`

`y_0=4.0552`

`4y_1=4*4.953=19.812`

`2y_2=2*6.0436=12.0872`

`4y_3=4*7.3891=29.5564`

`y_4=9.025`

`int y dx=0.2/3*(4.0552+19.812+12.0872+29.5564+9.025)`

`int y dx=0.2/3*(74.5358)`

`int y dx=4.9691`

Solution by Simpson's `1/3` Rule is `4.9691`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Trapezoidal rule
(Previous method)
2. Example-2 (table data)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.