Home > Numerical methods calculators > Numerical Integration using Simpson's 1/3 Rule example

2. Simpson's 1/3 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

3. Example-3 (table data)
(Previous example)
5. Example-5 (`f(x)=1/(x+1)`)
(Next example)

4. Example-4 (`f(x)=1/x`)





1. Find Solution of an equation 1/x using Simpson's 1/3 rule
x1 = 1 and x2 = 2
Step value (h) = 0.25


Solution:
Equation is `f(x)=(1)/(x)`.

The value of table for `x` and `y`

x11.251.51.752
y10.80.66670.57140.5

Method-1:
Using Simpsons `1/3` Rule

`int y dx=h/3 [(y_0+y_4)+4(y_1+y_3)+2(y_2)]`

`int y dx=0.25/3 [(1 +0.5)+4xx(0.8+0.5714)+2xx(0.6667)]`

`int y dx=0.25/3 [(1 +0.5)+4xx(1.3714)+2xx(0.6667)]`

`int y dx=0.25/3 [(1.5)+(5.4857)+(1.3333)]`

`int y dx=0.6933`

Solution by Simpson's `1/3` Rule is `0.6933`



Method-2:
Using Simpsons `1/3` Rule

`int y dx=h/3 [y_0+4y_1+2y_2+4y_3+y_4]`

`y_0=1`

`4y_1=4*0.8=3.2`

`2y_2=2*0.6667=1.3333`

`4y_3=4*0.5714=2.2857`

`y_4=0.5`

`int y dx=0.25/3*(1+3.2+1.3333+2.2857+0.5)`

`int y dx=0.25/3*(8.319)`

`int y dx=0.6933`

Solution by Simpson's `1/3` Rule is `0.6933`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 (table data)
(Previous example)
5. Example-5 (`f(x)=1/(x+1)`)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.