3. Find Solution using Simpson's 1/3 rule
| x | f(x) |
| 0.00 | 1.0000 |
| 0.25 | 0.9896 |
| 0.50 | 0.9589 |
| 0.75 | 0.9089 |
| 1.00 | 0.8415 |
Solution:The value of table for `x` and `y`
| x | 0 | 0.25 | 0.5 | 0.75 | 1 |
|---|
| y | 1 | 0.9896 | 0.9589 | 0.9089 | 0.8415 |
|---|
Method-1:Using Simpsons `1/3` Rule
`int y dx=h/3 [(y_0+y_4)+4(y_1+y_3)+2(y_2)]`
`int y dx=0.25/3 [(1 +0.8415)+4xx(0.9896+0.9089)+2xx(0.9589)]`
`int y dx=0.25/3 [(1 +0.8415)+4xx(1.8985)+2xx(0.9589)]`
`int y dx=0.25/3 [(1.8415)+(7.594)+(1.9178)]`
`int y dx=0.9461`
Solution by Simpson's `1/3` Rule is `0.9461`
Method-2:Using Simpsons `1/3` Rule
`int y dx=h/3 [y_0+4y_1+2y_2+4y_3+y_4]`
`y_0=1`
`4y_1=4*0.9896=3.9584`
`2y_2=2*0.9589=1.9178`
`4y_3=4*0.9089=3.6356`
`y_4=0.8415`
`int y dx=0.25/3*(1+3.9584+1.9178+3.6356+0.8415)`
`int y dx=0.25/3*(11.3533)`
`int y dx=0.9461`
Solution by Simpson's `1/3` Rule is `0.9461`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then