2. Find Solution of an equation 1/(x+1) using Simpson's 1/3 rule
x1 = 0 and x2 = 1
Interval N = 5Solution:Equation is `f(x)=(1)/(x+1)`.
`h = (b-a)/N`
`h = (1 - 0) / 5 = 0.2`
The value of table for `x` and `y`
| x | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
|---|
| y | 1 | 0.8333 | 0.7143 | 0.625 | 0.5556 | 0.5 |
|---|
Method-1:Using Simpsons `1/3` Rule
`int y dx=h/3 [(y_0+y_5)+4(y_1+y_3)+2(y_2+y_4)]`
`int y dx=0.2/3 [(1 +0.5)+4xx(0.8333+0.625)+2xx(0.7143+0.5556)]`
`int y dx=0.2/3 [(1 +0.5)+4xx(1.4583)+2xx(1.2698)]`
`int y dx=0.2/3 [(1.5)+(5.8333)+(2.5397)]`
`int y dx=0.6582`
Solution by Simpson's `1/3` Rule is `0.6582`
Method-2:Using Simpsons `1/3` Rule
`int y dx=h/3 [y_0+4y_1+2y_2+4y_3+2y_4+y_5]`
`y_0=1`
`4y_1=4*0.8333=3.3333`
`2y_2=2*0.7143=1.4286`
`4y_3=4*0.625=2.5`
`2y_4=2*0.5556=1.1111`
`y_5=0.5`
`int y dx=0.2/3*(1+3.3333+1.4286+2.5+1.1111+0.5)`
`int y dx=0.2/3*(9.873)`
`int y dx=0.6582`
Solution by Simpson's `1/3` Rule is `0.6582`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then