2. Find Solution using Simpson's 1/3 rule
| x | f(x) |
| 0.0 | 1.0000 |
| 0.1 | 0.9975 |
| 0.2 | 0.9900 |
| 0.3 | 0.9776 |
| 0.4 | 0.8604 |
Solution:The value of table for `x` and `y`
| x | 0 | 0.1 | 0.2 | 0.3 | 0.4 |
|---|
| y | 1 | 0.9975 | 0.99 | 0.9776 | 0.8604 |
|---|
Method-1:Using Simpsons `1/3` Rule
`int y dx=h/3 [(y_0+y_4)+4(y_1+y_3)+2(y_2)]`
`int y dx=0.1/3 [(1 +0.8604)+4xx(0.9975+0.9776)+2xx(0.99)]`
`int y dx=0.1/3 [(1 +0.8604)+4xx(1.9751)+2xx(0.99)]`
`int y dx=0.1/3 [(1.8604)+(7.9004)+(1.98)]`
`int y dx=0.3914`
Solution by Simpson's `1/3` Rule is `0.3914`
Method-2:Using Simpsons `1/3` Rule
`int y dx=h/3 [y_0+4y_1+2y_2+4y_3+y_4]`
`y_0=1`
`4y_1=4*0.9975=3.99`
`2y_2=2*0.99=1.98`
`4y_3=4*0.9776=3.9104`
`y_4=0.8604`
`int y dx=0.1/3*(1+3.99+1.98+3.9104+0.8604)`
`int y dx=0.1/3*(11.7408)`
`int y dx=0.3914`
Solution by Simpson's `1/3` Rule is `0.3914`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then