Home > Numerical methods calculators > Numerical Integration using Simpson's 1/3 Rule example

2. Simpson's 1/3 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

1. Formula & Example-1 (table data)
(Previous example)
3. Example-3 (table data)
(Next example)

2. Example-2 (table data)





2. Find Solution using Simpson's 1/3 rule
xf(x)
0.01.0000
0.10.9975
0.20.9900
0.30.9776
0.40.8604


Solution:
The value of table for `x` and `y`

x00.10.20.30.4
y10.99750.990.97760.8604

Method-1:
Using Simpsons `1/3` Rule

`int y dx=h/3 [(y_0+y_4)+4(y_1+y_3)+2(y_2)]`

`int y dx=0.1/3 [(1 +0.8604)+4xx(0.9975+0.9776)+2xx(0.99)]`

`int y dx=0.1/3 [(1 +0.8604)+4xx(1.9751)+2xx(0.99)]`

`int y dx=0.1/3 [(1.8604)+(7.9004)+(1.98)]`

`int y dx=0.3914`

Solution by Simpson's `1/3` Rule is `0.3914`



Method-2:
Using Simpsons `1/3` Rule

`int y dx=h/3 [y_0+4y_1+2y_2+4y_3+y_4]`

`y_0=1`

`4y_1=4*0.9975=3.99`

`2y_2=2*0.99=1.98`

`4y_3=4*0.9776=3.9104`

`y_4=0.8604`

`int y dx=0.1/3*(1+3.99+1.98+3.9104+0.8604)`

`int y dx=0.1/3*(11.7408)`

`int y dx=0.3914`

Solution by Simpson's `1/3` Rule is `0.3914`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1 (table data)
(Previous example)
3. Example-3 (table data)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.