Formula
1. Boole's Rule
`int y dx =(2h)/45 [7(y_0 + y_n) + 32(y_1+y_3+y_5+...) + 12(y_2+y_6+y_10+...) + 14(y_4+y_8+y_12+...)]`
|
Examples
1. Find Solution using Boole's rule
| x | f(x) |
| 1.4 | 4.0552 |
| 1.6 | 4.9530 |
| 1.8 | 6.0436 |
| 2.0 | 7.3891 |
| 2.2 | 9.0250 |
Solution:The value of table for `x` and `y`
| x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
|---|
| y | 4.0552 | 4.953 | 6.0436 | 7.3891 | 9.025 |
|---|
Method-1:Using Boole's Rule
`int y dx=(2h)/45 [7(y_0 + y_4)+32(y_1+y_3)+12(y_2)+14()]`
`int y dx=(2xx0.2)/45 [7xx(4.0552 +9.025)+32xx(4.953+7.3891)+12xx(6.0436)+14xx()]`
`int y dx=(2xx0.2)/45 [7xx(13.0802) + 32xx(12.3421) + 12xx(6.0436) + 14xx(0)]`
`int y dx=(2xx0.2)/45 [(91.5614) + (394.9472) + (72.5232) + (0)]`
`int y dx=4.9692`
Solution by Boole's Rule is `4.9692`
Method-2:Using Boole's Rule
`int y dx=(2h)/45 [7y_0+32y_1+12y_2+32y_3+7y_4]`
`7y_0=7*4.0552=28.3864`
`32y_1=32*4.953=158.496`
`12y_2=12*6.0436=72.5232`
`32y_3=32*7.3891=236.4512`
`7y_4=7*9.025=63.175`
`int y dx=(2xx0.2)/45*(28.3864+158.496+72.5232+236.4512+63.175)`
`int y dx=(2xx0.2)/45*(559.0318)`
`int y dx=4.9692`
Solution by Boole's Rule is `4.9692`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then