3. Find Solution using Boole's rule
| x | f(x) |
| 0.00 | 1.0000 |
| 0.25 | 0.9896 |
| 0.50 | 0.9589 |
| 0.75 | 0.9089 |
| 1.00 | 0.8415 |
Solution:The value of table for `x` and `y`
| x | 0 | 0.25 | 0.5 | 0.75 | 1 |
|---|
| y | 1 | 0.9896 | 0.9589 | 0.9089 | 0.8415 |
|---|
Method-1:Using Boole's Rule
`int y dx=(2h)/45 [7(y_0 + y_4)+32(y_1+y_3)+12(y_2)+14()]`
`int y dx=(2xx0.25)/45 [7xx(1 +0.8415)+32xx(0.9896+0.9089)+12xx(0.9589)+14xx()]`
`int y dx=(2xx0.25)/45 [7xx(1.8415) + 32xx(1.8985) + 12xx(0.9589) + 14xx(0)]`
`int y dx=(2xx0.25)/45 [(12.8905) + (60.752) + (11.5068) + (0)]`
`int y dx=0.9461`
Solution by Boole's Rule is `0.9461`
Method-2:Using Boole's Rule
`int y dx=(2h)/45 [7y_0+32y_1+12y_2+32y_3+7y_4]`
`7y_0=7*1=7`
`32y_1=32*0.9896=31.6672`
`12y_2=12*0.9589=11.5068`
`32y_3=32*0.9089=29.0848`
`7y_4=7*0.8415=5.8905`
`int y dx=(2xx0.25)/45*(7+31.6672+11.5068+29.0848+5.8905)`
`int y dx=(2xx0.25)/45*(85.1493)`
`int y dx=0.9461`
Solution by Boole's Rule is `0.9461`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then