1. Find Solution of an equation 1/x using Boole's rule
x1 = 1 and x2 = 2
Interval N = 8Solution:Equation is `f(x)=(1)/(x)`.
`h = (b-a)/N`
`h = (2 - 1) / 8 = 0.125`
The value of table for `x` and `y`
| x | 1 | 1.125 | 1.25 | 1.375 | 1.5 | 1.625 | 1.75 | 1.875 | 2 |
|---|
| y | 1 | 0.8889 | 0.8 | 0.7273 | 0.6667 | 0.6154 | 0.5714 | 0.5333 | 0.5 |
|---|
Method-1:Using Boole's Rule
`int y dx=(2h)/45 [7(y_0 + y_8)+32(y_1+y_3+y_5+y_7)+12(y_2+y_6)+14(y_4)]`
`int y dx=(2xx0.125)/45 [7xx(1 +0.5)+32xx(0.8889+0.7273+0.6154+0.5333)+12xx(0.8+0.5714)+14xx(0.6667)]`
`int y dx=(2xx0.125)/45 [7xx(1.5) + 32xx(2.7649) + 12xx(1.3714) + 14xx(0.6667)]`
`int y dx=(2xx0.125)/45 [(10.5) + (88.4761) + (16.4571) + (9.3333)]`
`int y dx=0.6931`
Solution by Boole's Rule is `0.6931`
Method-2:Using Boole's Rule
`int y dx=(2h)/45 [7y_0+32y_1+12y_2+32y_3+14y_4+32y_5+12y_6+32y_7+7y_8]`
`7y_0=7*1=7`
`32y_1=32*0.8889=28.4444`
`12y_2=12*0.8=9.6`
`32y_3=32*0.7273=23.2727`
`14y_4=14*0.6667=9.3333`
`32y_5=32*0.6154=19.6923`
`12y_6=12*0.5714=6.8571`
`32y_7=32*0.5333=17.0667`
`7y_8=7*0.5=3.5`
`int y dx=(2xx0.125)/45*(7+28.4444+9.6+23.2727+9.3333+19.6923+6.8571+17.0667+3.5)`
`int y dx=(2xx0.125)/45*(124.7666)`
`int y dx=0.6931`
Solution by Boole's Rule is `0.6931`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then