2. Find Solution using Boole's rule
| x | f(x) |
| 0.0 | 1.0000 |
| 0.1 | 0.9975 |
| 0.2 | 0.9900 |
| 0.3 | 0.9776 |
| 0.4 | 0.8604 |
Solution:The value of table for `x` and `y`
| x | 0 | 0.1 | 0.2 | 0.3 | 0.4 |
|---|
| y | 1 | 0.9975 | 0.99 | 0.9776 | 0.8604 |
|---|
Method-1:Using Boole's Rule
`int y dx=(2h)/45 [7(y_0 + y_4)+32(y_1+y_3)+12(y_2)+14()]`
`int y dx=(2xx0.1)/45 [7xx(1 +0.8604)+32xx(0.9975+0.9776)+12xx(0.99)+14xx()]`
`int y dx=(2xx0.1)/45 [7xx(1.8604) + 32xx(1.9751) + 12xx(0.99) + 14xx(0)]`
`int y dx=(2xx0.1)/45 [(13.0228) + (63.2032) + (11.88) + (0)]`
`int y dx=0.3916`
Solution by Boole's Rule is `0.3916`
Method-2:Using Boole's Rule
`int y dx=(2h)/45 [7y_0+32y_1+12y_2+32y_3+7y_4]`
`7y_0=7*1=7`
`32y_1=32*0.9975=31.92`
`12y_2=12*0.99=11.88`
`32y_3=32*0.9776=31.2832`
`7y_4=7*0.8604=6.0228`
`int y dx=(2xx0.1)/45*(7+31.92+11.88+31.2832+6.0228)`
`int y dx=(2xx0.1)/45*(88.106)`
`int y dx=0.3916`
Solution by Boole's Rule is `0.3916`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then