Home > Numerical methods calculators > Numerical Integration using Simpson's 3/8 Rule example

3. Simpson's 3/8 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

5. Example-5 (`f(x)=1/(x+1)`)
(Previous example)
7. Example-7 (`2x^3-4x+1`)
(Next example)

6. Example-6 (`x^3-2x+1`)





3. Find Solution of an equation x^3-2x+1 using Simpson's 3/8 rule
x1 = 2 and x2 = 4
Step value (h) = 0.5


Solution:
Equation is `f(x)=x^3-2x+1`.

The value of table for `x` and `y`

x22.533.54
y511.6252236.87557

Method-1:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`

`int y dx=(3xx0.5)/8 [(5 +57)+2xx(36.875)+3xx(11.625+22)]`

`int y dx=(3xx0.5)/8 [(5 +57)+2xx(36.875)+3xx(33.625)]`

`int y dx=(3xx0.5)/8 [(62)+(73.75)+(100.875)]`

`int y dx=44.3672`

Solution by Simpson's `3/8` Rule is `44.3672`



Method-2:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`

`y_0=5`

`3y_1=3*11.625=34.875`

`3y_2=3*22=66`

`2y_3=2*36.875=73.75`

`y_4=57`

`int y dx=(3xx0.5)/8 *(5+34.875+66+73.75+57)`

`int y dx=(3xx0.5)/8 *(236.625)`

`int y dx=44.3672`

Solution by Simpson's `3/8` Rule is `44.3672`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Example-5 (`f(x)=1/(x+1)`)
(Previous example)
7. Example-7 (`2x^3-4x+1`)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.