3. Find Solution of an equation x^3-2x+1 using Simpson's 3/8 rule
x1 = 2 and x2 = 4
Step value (h) = 0.5Solution:Equation is `f(x)=x^3-2x+1`.
The value of table for `x` and `y`
| x | 2 | 2.5 | 3 | 3.5 | 4 |
|---|
| y | 5 | 11.625 | 22 | 36.875 | 57 |
|---|
Method-1:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`
`int y dx=(3xx0.5)/8 [(5 +57)+2xx(36.875)+3xx(11.625+22)]`
`int y dx=(3xx0.5)/8 [(5 +57)+2xx(36.875)+3xx(33.625)]`
`int y dx=(3xx0.5)/8 [(62)+(73.75)+(100.875)]`
`int y dx=44.3672`
Solution by Simpson's `3/8` Rule is `44.3672`
Method-2:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`
`y_0=5`
`3y_1=3*11.625=34.875`
`3y_2=3*22=66`
`2y_3=2*36.875=73.75`
`y_4=57`
`int y dx=(3xx0.5)/8 *(5+34.875+66+73.75+57)`
`int y dx=(3xx0.5)/8 *(236.625)`
`int y dx=44.3672`
Solution by Simpson's `3/8` Rule is `44.3672`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then