3. Find Solution using Simpson's 3/8 rule
| x | f(x) |
| 0.00 | 1.0000 |
| 0.25 | 0.9896 |
| 0.50 | 0.9589 |
| 0.75 | 0.9089 |
| 1.00 | 0.8415 |
Solution:The value of table for `x` and `y`
| x | 0 | 0.25 | 0.5 | 0.75 | 1 |
|---|
| y | 1 | 0.9896 | 0.9589 | 0.9089 | 0.8415 |
|---|
Method-1:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`
`int y dx=(3xx0.25)/8 [(1 +0.8415)+2xx(0.9089)+3xx(0.9896+0.9589)]`
`int y dx=(3xx0.25)/8 [(1 +0.8415)+2xx(0.9089)+3xx(1.9485)]`
`int y dx=(3xx0.25)/8 [(1.8415)+(1.8178)+(5.8455)]`
`int y dx=0.8911`
Solution by Simpson's `3/8` Rule is `0.8911`
Method-2:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`
`y_0=1`
`3y_1=3*0.9896=2.9688`
`3y_2=3*0.9589=2.8767`
`2y_3=2*0.9089=1.8178`
`y_4=0.8415`
`int y dx=(3xx0.25)/8 *(1+2.9688+2.8767+1.8178+0.8415)`
`int y dx=(3xx0.25)/8 *(9.5048)`
`int y dx=0.8911`
Solution by Simpson's `3/8` Rule is `0.8911`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then