Home > Numerical methods calculators > Numerical Integration using Simpson's 3/8 Rule example

3. Simpson's 3/8 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

2. Example-2 (table data)
(Previous example)
4. Example-4 (`f(x)=1/x`)
(Next example)

3. Example-3 (table data)





3. Find Solution using Simpson's 3/8 rule
xf(x)
0.001.0000
0.250.9896
0.500.9589
0.750.9089
1.000.8415


Solution:
The value of table for `x` and `y`

x00.250.50.751
y10.98960.95890.90890.8415

Method-1:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`

`int y dx=(3xx0.25)/8 [(1 +0.8415)+2xx(0.9089)+3xx(0.9896+0.9589)]`

`int y dx=(3xx0.25)/8 [(1 +0.8415)+2xx(0.9089)+3xx(1.9485)]`

`int y dx=(3xx0.25)/8 [(1.8415)+(1.8178)+(5.8455)]`

`int y dx=0.8911`

Solution by Simpson's `3/8` Rule is `0.8911`



Method-2:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`

`y_0=1`

`3y_1=3*0.9896=2.9688`

`3y_2=3*0.9589=2.8767`

`2y_3=2*0.9089=1.8178`

`y_4=0.8415`

`int y dx=(3xx0.25)/8 *(1+2.9688+2.8767+1.8178+0.8415)`

`int y dx=(3xx0.25)/8 *(9.5048)`

`int y dx=0.8911`

Solution by Simpson's `3/8` Rule is `0.8911`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 (table data)
(Previous example)
4. Example-4 (`f(x)=1/x`)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.