2. Find Solution of an equation 1/(x+1) using Simpson's 3/8 rule
x1 = 0 and x2 = 1
Interval N = 5Solution:Equation is `f(x)=(1)/(x+1)`.
`h = (b-a)/N`
`h = (1 - 0) / 5 = 0.2`
The value of table for `x` and `y`
| x | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
|---|
| y | 1 | 0.8333 | 0.7143 | 0.625 | 0.5556 | 0.5 |
|---|
Method-1:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [(y_0+y_5)+2(y_3)+3(y_1+y_2+y_4)]`
`int y dx=(3xx0.2)/8 [(1 +0.5)+2xx(0.625)+3xx(0.8333+0.7143+0.5556)]`
`int y dx=(3xx0.2)/8 [(1 +0.5)+2xx(0.625)+3xx(2.1032)]`
`int y dx=(3xx0.2)/8 [(1.5)+(1.25)+(6.3095)]`
`int y dx=0.6795`
Solution by Simpson's `3/8` Rule is `0.6795`
Method-2:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+3y_4+y_5]`
`y_0=1`
`3y_1=3*0.8333=2.5`
`3y_2=3*0.7143=2.1429`
`2y_3=2*0.625=1.25`
`3y_4=3*0.5556=1.6667`
`y_5=0.5`
`int y dx=(3xx0.2)/8 *(1+2.5+2.1429+1.25+1.6667+0.5)`
`int y dx=(3xx0.2)/8 *(9.0595)`
`int y dx=0.6795`
Solution by Simpson's `3/8` Rule is `0.6795`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then