Home > Numerical methods calculators > Numerical Integration using Simpson's 3/8 Rule example

3. Simpson's 3/8 rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

4. Example-4 (`f(x)=1/x`)
(Previous example)
6. Example-6 (`x^3-2x+1`)
(Next example)

5. Example-5 (`f(x)=1/(x+1)`)





2. Find Solution of an equation 1/(x+1) using Simpson's 3/8 rule
x1 = 0 and x2 = 1
Interval N = 5


Solution:
Equation is `f(x)=(1)/(x+1)`.

`h = (b-a)/N`

`h = (1 - 0) / 5 = 0.2`

The value of table for `x` and `y`

x00.20.40.60.81
y10.83330.71430.6250.55560.5

Method-1:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [(y_0+y_5)+2(y_3)+3(y_1+y_2+y_4)]`

`int y dx=(3xx0.2)/8 [(1 +0.5)+2xx(0.625)+3xx(0.8333+0.7143+0.5556)]`

`int y dx=(3xx0.2)/8 [(1 +0.5)+2xx(0.625)+3xx(2.1032)]`

`int y dx=(3xx0.2)/8 [(1.5)+(1.25)+(6.3095)]`

`int y dx=0.6795`

Solution by Simpson's `3/8` Rule is `0.6795`



Method-2:
Using Simpson's `3/8` Rule

`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+3y_4+y_5]`

`y_0=1`

`3y_1=3*0.8333=2.5`

`3y_2=3*0.7143=2.1429`

`2y_3=2*0.625=1.25`

`3y_4=3*0.5556=1.6667`

`y_5=0.5`

`int y dx=(3xx0.2)/8 *(1+2.5+2.1429+1.25+1.6667+0.5)`

`int y dx=(3xx0.2)/8 *(9.0595)`

`int y dx=0.6795`

Solution by Simpson's `3/8` Rule is `0.6795`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example-4 (`f(x)=1/x`)
(Previous example)
6. Example-6 (`x^3-2x+1`)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.