2. Find Solution using Simpson's 3/8 rule
| x | f(x) |
| 0.0 | 1.0000 |
| 0.1 | 0.9975 |
| 0.2 | 0.9900 |
| 0.3 | 0.9776 |
| 0.4 | 0.8604 |
Solution:The value of table for `x` and `y`
| x | 0 | 0.1 | 0.2 | 0.3 | 0.4 |
|---|
| y | 1 | 0.9975 | 0.99 | 0.9776 | 0.8604 |
|---|
Method-1:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [(y_0+y_4)+2(y_3)+3(y_1+y_2)]`
`int y dx=(3xx0.1)/8 [(1 +0.8604)+2xx(0.9776)+3xx(0.9975+0.99)]`
`int y dx=(3xx0.1)/8 [(1 +0.8604)+2xx(0.9776)+3xx(1.9875)]`
`int y dx=(3xx0.1)/8 [(1.8604)+(1.9552)+(5.9625)]`
`int y dx=0.3667`
Solution by Simpson's `3/8` Rule is `0.3667`
Method-2:Using Simpson's `3/8` Rule
`int y dx=(3h)/8 [y_0+3y_1+3y_2+2y_3+y_4]`
`y_0=1`
`3y_1=3*0.9975=2.9925`
`3y_2=3*0.99=2.97`
`2y_3=2*0.9776=1.9552`
`y_4=0.8604`
`int y dx=(3xx0.1)/8 *(1+2.9925+2.97+1.9552+0.8604)`
`int y dx=(3xx0.1)/8 *(9.7781)`
`int y dx=0.3667`
Solution by Simpson's `3/8` Rule is `0.3667`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then