3. Find Solution using Weddle's rule
| x | f(x) |
| 0 | 1 |
| 1 | 1/2 |
| 2 | 1/3 |
| 3 | 1/4 |
| 4 | 1/5 |
| 5 | 1/6 |
| 6 | 1/7 |
Solution:The value of table for `x` and `y`
| x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|
| y | 1 | 0.5 | 0.3333 | 0.25 | 0.2 | 0.1667 | 0.1429 |
|---|
Method-1:Using Weddle's Rule
`int y dx=(3h)/10 [(y_0+5y_1+y_2+6y_3+y_4+5y_5+y_6)]`
`int y dx=(3xx1)/10 [(1 + 5xx0.5 + 0.3333 + 6xx0.25 + 0.2 + 5xx0.1667 + 0.1429)]`
`int y dx=(3xx1)/10 [6.5095]`
`int y dx=1.9529`
Solution by Weddle's Rule is `1.9529`
Method-2:Using Weddle's Rule
`int y dx=(3h)/10 [(y_0+5y_1+y_2+6y_3+y_4+5y_5+y_6)]`
`y_0=1`
`5y_1=5*0.5=2.5`
`y_2=0.3333`
`6y_3=6*0.25=1.5`
`y_4=0.2`
`5y_5=5*0.1667=0.8333`
`y_6=0.1429`
`int y dx=(3xx1)/10*[(1+2.5+0.3333+1.5+0.20.8333+0.1429)]`
`int y dx=(3xx1)/10*(6.5095)`
`int y dx=1.9529`
Solution by Weddle's Rule is `1.9529`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then