1. Trapezoidal rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (table data)
  3. Example-3 (table data)
  4. Example-4 (`f(x)=1/x`)
  5. Example-5 (`f(x)=1/(x+1)`)
  6. Example-6 (`x^3-2x+1`)
  7. Example-7 (`2x^3-4x+1`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

2. Example-2 (table data)
(Next example)

1. Formula & Example-1 (table data)





Formula
1. Trapezoidal Rule
`int y dx = h/2 (y_0 + 2 (y_1 + y_2 + y_3 + ... + y_(n-1)) + y_n)`

Examples
1. Find Solution using Trapezoidal rule
xf(x)
1.44.0552
1.64.9530
1.86.0436
2.07.3891
2.29.0250


Solution:
The value of table for `x` and `y`

x1.41.61.822.2
y4.05524.9536.04367.38919.025

Method-1:
Using Trapezoidal Rule
`int y dx=h/2 [y_0+y_4+2(y_1+y_2+y_3)]`

`int y dx=0.2/2 [4.0552 +9.025 + 2xx(4.953+6.0436+7.3891)]`

`int y dx=0.2/2 [4.0552 +9.025 + 2xx(18.3857)]`

`int y dx=0.2/2 [4.0552 +9.025 + 36.7714]`

`int y dx=4.9852`

Solution by Trapezoidal Rule is `4.9852`



Method-2:
Using Trapezoidal Rule
`int y dx=h/2 [y_0+2y_1+2y_2+2y_3+y_4]`

`y_0=4.0552`

`2y_1=2*4.953=9.906`

`2y_2=2*6.0436=12.0872`

`2y_3=2*7.3891=14.7782`

`y_4=9.025`

`int y dx=0.2/2*(4.0552+9.906+12.0872+14.7782+9.025)`

`int y dx=0.2/2*(49.8516)`

`int y dx=4.9852`

Solution by Trapezoidal Rule is `4.9852`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 (table data)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.