|
|
|
|
Home > Matrix & Vector calculators > LU decomposition using Doolittle's method of Matrix example
|
|
|
9. LU decomposition using Doolittle's method of matrix example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form (ref)
- Transforming matrix to Reduced Row Echelon Form (rref)
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find LU decomposition using Doolittle's method of Matrix ... `[[3,2,4],[2,0,2],[4,2,3]]`Solution:Doolittle's method for LU decomposition Let `A=LU` | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
| = | | `1` | `0` | `0` | | | `l_(21)` | `1` | `0` | | | `l_(31)` | `l_(32)` | `1` | |
| `xx` | | `u_(11)` | `u_(12)` | `u_(13)` | | | `0` | `u_(22)` | `u_(23)` | | | `0` | `0` | `u_(33)` | |
|
| `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
| = | | `u_(11)` | `u_(12)` | `u_(13)` | | | `l_(21)u_(11)` | `l_(21)u_(12) + u_(22)` | `l_(21)u_(13) + u_(23)` | | | `l_(31)u_(11)` | `l_(31)u_(12) + l_(32)u_(22)` | `l_(31)u_(13) + l_(32)u_(23) + u_(33)` | |
|
This implies `u_(11)=3` `u_(12)=2` `u_(13)=4` `l_(21)u_(11)=2=>l_(21)xx3=2=>l_(21)=0.6666666667` `l_(21)u_(12) + u_(22)=0=>0.6666666667xx2 + u_(22)=0=>u_(22)=-1.3333333333` `l_(21)u_(13) + u_(23)=2=>0.6666666667xx4 + u_(23)=2=>u_(23)=-0.6666666667` `l_(31)u_(11)=4=>l_(31)xx3=4=>l_(31)=1.3333333333` `l_(31)u_(12) + l_(32)u_(22)=2=>1.3333333333xx2 + l_(32)xx(-1.3333333333)=2=>l_(32)=0.5` `l_(31)u_(13) + l_(32)u_(23) + u_(33)=3=>1.3333333333xx4 + 0.5xx(-0.6666666667) + u_(33)=3=>u_(33)=-2` Now checking `A=LU` ? | `LU` | = | | `1` | `0` | `0` | | | `0.6666666667` | `1` | `0` | | | `1.3333333333` | `0.5` | `1` | |
| `xx` | | `3` | `2` | `4` | | | `0` | `-1.3333333333` | `-0.6666666667` | | | `0` | `0` | `-2` | |
| = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
| And `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|