1. Find Inverse Power Method for finding dominant eigenvalue ...
`[[2,3],[5,4]]`
`x_0` = Solution:1. Find `A^-1`
`=2 xx 4 - 3 xx 5`
`=8 -15`
`=-7`
`"Now, "A^(-1)=1/|A| xx Adj(A)`
| = | | `-0.5714` | `0.4286` | | | `0.7143` | `-0.2857` | |
|
| `A^-1=` | | -0.5714 | 0.4286 | | | 0.7143 | -0.2857 | |
|
`1^(st)` iteration :Multiply the matrix by the vector| `A^-1 x_0 =` | | -0.5714 | 0.4286 | | | 0.7143 | -0.2857 | |
| | | `=` | |
Normalize the resulting vectorTo normalize, divide each element of vector by its largest absolute value, which is `0.4286`
`2^(nd)` iteration :Repeat the multiplication| `A^-1 x_1 =` | | -0.5714 | 0.4286 | | | 0.7143 | -0.2857 | |
| | | `=` | |
Normalize againThe largest absolute value is `0.619`
`3^(rd)` iteration :Repeat the multiplication| `A^-1 x_2 =` | | -0.5714 | 0.4286 | | | 0.7143 | -0.2857 | |
| | | `=` | |
Normalize againThe largest absolute value is `0.956`
`4^(th)` iteration :Repeat the multiplication| `A^-1 x_3 =` | | -0.5714 | 0.4286 | | | 0.7143 | -0.2857 | |
| | | `=` | |
Normalize againThe largest absolute value is `0.9869`
`5^(th)` iteration :Repeat the multiplication| `A^-1 x_4 =` | | -0.5714 | 0.4286 | | | 0.7143 | -0.2857 | |
| | | `=` | |
Normalize againThe largest absolute value is `0.999`
`6^(th)` iteration :Repeat the multiplication| `A^-1 x_5 =` | | -0.5714 | 0.4286 | | | 0.7143 | -0.2857 | |
| | | `=` | |
Normalize againThe largest absolute value is `0.9997`
`7^(th)` iteration :Repeat the multiplication| `A^-1 x_6 =` | | -0.5714 | 0.4286 | | | 0.7143 | -0.2857 | |
| | | `=` | |
Normalize againThe largest absolute value is `1`
`:.` The dominant eigenvalue `lamda=1~=1`
and the dominant eigenvector is :
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then