Find LU decomposition using Doolittle's method of Matrix ...
`[[2,3],[4,10]]`Solution:Doolittle's method for LU decomposition
Let `A=LU`
| = | | `xx` | | `u_(11)` | `u_(12)` | | | `0` | `u_(22)` | |
|
| = | | `u_(11)` | `u_(12)` | | | `l_(21)u_(11)` | `l_(21)u_(12) + u_(22)` | |
|
This implies
`u_(11)=2`
`u_(12)=3`
`l_(21)u_(11)=4=>l_(21)xx2=4=>l_(21)=2`
`l_(21)u_(12) + u_(22)=10=>2xx3 + u_(22)=10=>u_(22)=4`
Now checking `A=LU` ?
Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then