1. Calculate Moment about mean from the following data
`10,50,30,20,10,20,70,30`Solution:Moments :Mean `bar x=(sum x)/n`
`=(10+50+30+20+10+20+70+30)/8`
`=240/8`
`=30`
| `x` | `(x-bar x)` `=(x-30)` | `(x-bar x)^2` `=(x-30)^2` | `(x-bar x)^3` `=(x-30)^3` | `(x-bar x)^4` `=(x-30)^4` |
| 10 | -20 | 400 | -8000 | 160000 |
| 50 | 20 | 400 | 8000 | 160000 |
| 30 | 0 | 0 | 0 | 0 |
| 20 | -10 | 100 | -1000 | 10000 |
| 10 | -20 | 400 | -8000 | 160000 |
| 20 | -10 | 100 | -1000 | 10000 |
| 70 | 40 | 1600 | 64000 | 2560000 |
| 30 | 0 | 0 | 0 | 0 |
| --- | --- | --- | --- | --- |
| `240` | `0` | `3000` | `54000` | `3060000` |
Now, calculate Central MomentsFirst Central Moment`m_1=(sum (x-bar x))/n`
`=(0)/(8)`
`=0`
Second Central Moment`m_2=(sum (x-bar x)^2)/n`
`=(3000)/(8)`
`=375`
Third Central Moment`m_3=(sum (x-bar x)^3)/n`
`=(54000)/(8)`
`=6750`
Fourth Central Moment`m_4=(sum (x-bar x)^4)/n`
`=(3060000)/(8)`
`=382500`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(6750)^2/(375)^3`
`=(45562500)/(52734375)`
`=0.864`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(382500)/(375)^2`
`=(382500)/(140625)`
`=2.72`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
2. Calculate Moment about mean from the following data
`85,96,76,108,85,80,100,85,70,95`Solution:Moments :Mean `bar x=(sum x)/n`
`=(85+96+76+108+85+80+100+85+70+95)/10`
`=880/10`
`=88`
| `x` | `(x-bar x)` `=(x-88)` | `(x-bar x)^2` `=(x-88)^2` | `(x-bar x)^3` `=(x-88)^3` | `(x-bar x)^4` `=(x-88)^4` |
| 85 | -3 | 9 | -27 | 81 |
| 96 | 8 | 64 | 512 | 4096 |
| 76 | -12 | 144 | -1728 | 20736 |
| 108 | 20 | 400 | 8000 | 160000 |
| 85 | -3 | 9 | -27 | 81 |
| 80 | -8 | 64 | -512 | 4096 |
| 100 | 12 | 144 | 1728 | 20736 |
| 85 | -3 | 9 | -27 | 81 |
| 70 | -18 | 324 | -5832 | 104976 |
| 95 | 7 | 49 | 343 | 2401 |
| --- | --- | --- | --- | --- |
| `880` | `0` | `1216` | `2430` | `317284` |
Now, calculate Central MomentsFirst Central Moment`m_1=(sum (x-bar x))/n`
`=(0)/(10)`
`=0`
Second Central Moment`m_2=(sum (x-bar x)^2)/n`
`=(1216)/(10)`
`=121.6`
Third Central Moment`m_3=(sum (x-bar x)^3)/n`
`=(2430)/(10)`
`=243`
Fourth Central Moment`m_4=(sum (x-bar x)^4)/n`
`=(317284)/(10)`
`=31728.4`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(243)^2/(121.6)^3`
`=(59049)/(1798045.696)`
`=0.0328`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(31728.4)/(121.6)^2`
`=(31728.4)/(14786.56)`
`=2.1458`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
3. Calculate Moment about mean from the following data
`3,23,13,11,15,5,4,2`Solution:Moments :Mean `bar x=(sum x)/n`
`=(3+23+13+11+15+5+4+2)/8`
`=76/8`
`=9.5`
| `x` | `(x-bar x)` `=(x-9.5)` | `(x-bar x)^2` `=(x-9.5)^2` | `(x-bar x)^3` `=(x-9.5)^3` | `(x-bar x)^4` `=(x-9.5)^4` |
| 3 | -6.5 | 42.25 | -274.625 | 1785.0625 |
| 23 | 13.5 | 182.25 | 2460.375 | 33215.0625 |
| 13 | 3.5 | 12.25 | 42.875 | 150.0625 |
| 11 | 1.5 | 2.25 | 3.375 | 5.0625 |
| 15 | 5.5 | 30.25 | 166.375 | 915.0625 |
| 5 | -4.5 | 20.25 | -91.125 | 410.0625 |
| 4 | -5.5 | 30.25 | -166.375 | 915.0625 |
| 2 | -7.5 | 56.25 | -421.875 | 3164.0625 |
| --- | --- | --- | --- | --- |
| `76` | `0` | `376` | `1719` | `40559.5` |
Now, calculate Central MomentsFirst Central Moment`m_1=(sum (x-bar x))/n`
`=(0)/(8)`
`=0`
Second Central Moment`m_2=(sum (x-bar x)^2)/n`
`=(376)/(8)`
`=47`
Third Central Moment`m_3=(sum (x-bar x)^3)/n`
`=(1719)/(8)`
`=214.875`
Fourth Central Moment`m_4=(sum (x-bar x)^4)/n`
`=(40559.5)/(8)`
`=5069.9375`
Skewness `beta_1=(m_3)^2/(m_2)^3`
`=(214.875)^2/(47)^3`
`=(46171.2656)/(103823)`
`=0.4447`
Kurtosis `beta_2=(m_4)/(m_2)^2`
`=(5069.9375)/(47)^2`
`=(5069.9375)/(2209)`
`=2.2951`
Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right).
Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then