Home > Statistical Methods calculators > Raw Moments (Moments about origin), Central Moments (Moments about mean), Moment coefficient of skewness, Moment coefficient of kurtosis for ungrouped data example

Moments about mean Examples for ungrouped data ( Enter your problem )
  1. Moments about mean Examples
  2. Moments about origin Examples
  3. Moments about the value Examples
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Construct an ungrouped frequency distribution table
  19. Construct a grouped frequency distribution table
  20. Maximum, Minimum
  21. Sum, Length
  22. Range, Mid Range
  23. Stem and leaf plot
  24. Ascending order, Descending order
  25. Raw Moments and Central Moments

24. Ascending order, Descending order
(Previous method)
2. Moments about origin Examples
(Next example)

1. Moments about mean Examples





1. Calculate Moment about mean from the following data
`10,50,30,20,10,20,70,30`


Solution:
Moments :
Mean `bar x=(sum x)/n`

`=(10+50+30+20+10+20+70+30)/8`

`=240/8`

`=30`

`x``(x-bar x)`
`=(x-30)`
`(x-bar x)^2`
`=(x-30)^2`
`(x-bar x)^3`
`=(x-30)^3`
`(x-bar x)^4`
`=(x-30)^4`
10-20400-8000160000
50204008000160000
300000
20-10100-100010000
10-20400-8000160000
20-10100-100010000
70401600640002560000
300000
---------------
`240``0``3000``54000``3060000`


Now, calculate Central Moments

First Central Moment
`m_1=(sum (x-bar x))/n`

`=(0)/(8)`

`=0`



Second Central Moment
`m_2=(sum (x-bar x)^2)/n`

`=(3000)/(8)`

`=375`



Third Central Moment
`m_3=(sum (x-bar x)^3)/n`

`=(54000)/(8)`

`=6750`



Fourth Central Moment
`m_4=(sum (x-bar x)^4)/n`

`=(3060000)/(8)`

`=382500`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(6750)^2/(375)^3`

`=(45562500)/(52734375)`

`=0.864`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(382500)/(375)^2`

`=(382500)/(140625)`

`=2.72`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
2. Calculate Moment about mean from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Moments :
Mean `bar x=(sum x)/n`

`=(85+96+76+108+85+80+100+85+70+95)/10`

`=880/10`

`=88`

`x``(x-bar x)`
`=(x-88)`
`(x-bar x)^2`
`=(x-88)^2`
`(x-bar x)^3`
`=(x-88)^3`
`(x-bar x)^4`
`=(x-88)^4`
85-39-2781
968645124096
76-12144-172820736
108204008000160000
85-39-2781
80-864-5124096
10012144172820736
85-39-2781
70-18324-5832104976
957493432401
---------------
`880``0``1216``2430``317284`


Now, calculate Central Moments

First Central Moment
`m_1=(sum (x-bar x))/n`

`=(0)/(10)`

`=0`



Second Central Moment
`m_2=(sum (x-bar x)^2)/n`

`=(1216)/(10)`

`=121.6`



Third Central Moment
`m_3=(sum (x-bar x)^3)/n`

`=(2430)/(10)`

`=243`



Fourth Central Moment
`m_4=(sum (x-bar x)^4)/n`

`=(317284)/(10)`

`=31728.4`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(243)^2/(121.6)^3`

`=(59049)/(1798045.696)`

`=0.0328`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(31728.4)/(121.6)^2`

`=(31728.4)/(14786.56)`

`=2.1458`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
3. Calculate Moment about mean from the following data
`3,23,13,11,15,5,4,2`


Solution:
Moments :
Mean `bar x=(sum x)/n`

`=(3+23+13+11+15+5+4+2)/8`

`=76/8`

`=9.5`

`x``(x-bar x)`
`=(x-9.5)`
`(x-bar x)^2`
`=(x-9.5)^2`
`(x-bar x)^3`
`=(x-9.5)^3`
`(x-bar x)^4`
`=(x-9.5)^4`
3-6.542.25-274.6251785.0625
2313.5182.252460.37533215.0625
133.512.2542.875150.0625
111.52.253.3755.0625
155.530.25166.375915.0625
5-4.520.25-91.125410.0625
4-5.530.25-166.375915.0625
2-7.556.25-421.8753164.0625
---------------
`76``0``376``1719``40559.5`


Now, calculate Central Moments

First Central Moment
`m_1=(sum (x-bar x))/n`

`=(0)/(8)`

`=0`



Second Central Moment
`m_2=(sum (x-bar x)^2)/n`

`=(376)/(8)`

`=47`



Third Central Moment
`m_3=(sum (x-bar x)^3)/n`

`=(1719)/(8)`

`=214.875`



Fourth Central Moment
`m_4=(sum (x-bar x)^4)/n`

`=(40559.5)/(8)`

`=5069.9375`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(214.875)^2/(47)^3`

`=(46171.2656)/(103823)`

`=0.4447`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(5069.9375)/(47)^2`

`=(5069.9375)/(2209)`

`=2.2951`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



24. Ascending order, Descending order
(Previous method)
2. Moments about origin Examples
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.