| 
    
        | 
        
            |  |  
            |  |  
            | Code is changed on 22.07.2025, Now it also works for Complex Number.
 For wrong or incomplete solution, please submit the feedback form.
 So, I will try my best to improve it soon.
 |  
            |  |  
            |  |  
            | 
	
    
 
	
		
			
        
    
        
    
    
    
    
    
        | Solution |  
        | 
            
  
  
  
  
                
                
 Solution provided by AtoZmath.com
             |  
        |  |  
			
 
    
        | SVD - Singular Value Decomposition calculator |  
        |  1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]` 
  2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]` 
  3. `[[3,2,4],[2,0,2],[4,2,3]]` 
  4. `[[1,1,1],[-1,-3,-3],[2,4,4]]` 
  5. `[[2,3],[4,10]]` 
  6. `[[5,1],[4,2]]` 
 |  
        | 
 
 
 Example1. Find SVD - Singular Value Decomposition ...`[[4,0],[3,-5]]`Solution:
 
 `A' * A`| = | |  | `4×4+3×3` | `4×0+3×(-5)` |  |  |  | `0×4+(-5)×3` | `0×0+(-5)×(-5)` |  | 
 | 
 | = | |  | `16+9` | `0+(-15)` |  |  |  | `0+(-15)` | `0+25` |  | 
 | 
Find Eigen vector for `A' * A` `|A' * A-lamdaI|=0` | |  | `(25-lamda)` | `-15` |  |  |  | `-15` | `(25-lamda)` |  | 
 | = 0 | 
 `:.(25-lamda) × (25-lamda) - (-15) × (-15)=0` `:.(625-50lamda+lamda^2)-225=0` `:.(lamda^2-50lamda+400)=0` `:.(lamda-10)(lamda-40)=0` `:.(lamda-10)=0 or (lamda-40)=0` `:.lamda=10 or lamda=40` `:.` The eigenvalues of the matrix `A' * A` are given by `lamda=10,40` 1. Eigenvectors for `lamda=40`
 1. Eigenvectors for `lamda=40` | `A' * A-lamdaI = ` |  | - `40` |  | 
 Now, reduce this matrix `R_1 larr R_1-:(-15)` `R_2 larr R_2+15xx R_1` The system associated with the eigenvalue `lamda=40` `=>x_1+x_2=0` `=>x_1=-x_2` `:.` eigenvectors corresponding to the eigenvalue `lamda=40` is Let `x_2=1`2. Eigenvectors for `lamda=10`
 2. Eigenvectors for `lamda=10` | `A' * A-lamdaI = ` |  | - `10` |  | 
 Now, reduce this matrix `R_1 larr R_1-:15` `R_2 larr R_2+15xx R_1` The system associated with the eigenvalue `lamda=10` `=>x_1-x_2=0` `=>x_1=x_2` `:.` eigenvectors corresponding to the eigenvalue `lamda=10` is Let `x_2=1`For Eigenvector-1 `(-1,1)`, Length L = `sqrt(|-1|^2+|1|^2)=1.4142` So, normalizing gives `v_1=((-1)/(1.4142),(1)/(1.4142))=(-0.7071,0.7071)` For Eigenvector-2 `(1,1)`, Length L = `sqrt(|1|^2+|1|^2)=1.4142` So, normalizing gives `v_2=((1)/(1.4142),(1)/(1.4142))=(0.7071,0.7071)` Solution `U` is found using formula `u_i=1/sigma_i A*v_i` | `:. U = ` | |  | `-0.4472` | `0.8944` |  |  |  | `-0.8944` | `-0.4472` |  | 
 | 
 | `:. Sigma = ` | |  | `sqrt(40)` | `0` |  |  |  | `0` | `sqrt(10)` |  | 
 | `=` |  | 
 | `:. V = ` | `[v_1,v_2]` | `=` | |  | `-0.7071` | `0.7071` |  |  |  | `0.7071` | `0.7071` |  | 
 | 
 Solution is possible.Verify Solution `A = U Sigma V^T`| `U×Sigma` | = | |  | `-0.44721` | `0.89442` |  |  |  | `-0.89442` | `-0.44721` |  | 
 | × |  | 
 | = | |  | `-0.44721×6.32456+0.89442×0` | `-0.44721×0+0.89442×3.16228` |  |  |  | `-0.89442×6.32456+(-0.44721)×0` | `-0.89442×0+(-0.44721)×3.16228` |  | 
 | 
 | = | |  | `-2.82841+0` | `0+2.82841` |  |  |  | `-5.65681+0` | `0+(-1.4142)` |  | 
 | 
 | = | |  | `-2.82841` | `2.82841` |  |  |  | `-5.65681` | `-1.4142` |  | 
 | 
 | `(U × Sigma)×(V^T)` | = | |  | `-2.82841` | `2.82841` |  |  |  | `-5.65681` | `-1.4142` |  | 
 | × | |  | `-0.70711` | `0.70711` |  |  |  | `0.70711` | `0.70711` |  | 
 | 
 | = | |  | `-2.82841×(-0.70711)+2.82841×0.70711` | `-2.82841×0.70711+2.82841×0.70711` |  |  |  | `-5.65681×(-0.70711)+(-1.4142)×0.70711` | `-5.65681×0.70711+(-1.4142)×0.70711` |  | 
 | 
 | = | |  | `1.99999+1.99999` | `-1.99999+1.99999` |  |  |  | `3.99999+(-1)` | `-3.99999+(-1)` |  | 
 | 
 | = | |  | `3.99999` | `0` |  |  |  | `2.99999` | `-4.99999` |  | 
 | 
 Solution is possible. |  |  
            |  |  |  |