|
|
|
|
Code is changed on 22.07.2025, Now it also works for Complex Number.
For wrong or incomplete solution, please submit the feedback form.
So, I will try my best to improve it soon.
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
QR Decomposition (Gram Schmidt Method) calculator
|
1. `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`
2. `[[1,-4],[2,3],[2,2]]`
3. `[[3,-6],[4,-8],[0,1]]`
4. `[[1,2,4],[0,0,5],[0,3,6]]`
|
Example1. Find QR Decomposition (Gram Schmidt Method) ... `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`Solution:| Here `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
`r_(11)=||q_1'||=sqrt((1)^2+(1)^2+(1)^2+(1)^2)=sqrt(4)=2` | `q_1 = 1/(||q_1'||) * q_1'` | = | `1/2 * ` | | = | |
| `r_(12)=q_1^T * a_2` | = | | `xx` | | `=3` |
| `q_2'` | `=a_2-r_(12) * q_1` | = | | = | |
`r_(22)=||q_2'||=sqrt((-2.5)^2+(2.5)^2+(2.5)^2+(-2.5)^2)=sqrt(25)=5` | `q_2 = 1/(||q_2'||) * q_2'` | = | `1/5 * ` | | = | |
| `r_(13)=q_1^T * a_3` | = | | `xx` | | `=2` |
| `r_(23)=q_2^T * a_3` | = | | `xx` | | `=-2` |
| `q_3'` | `=a_3-r_(13) * q_1-r_(23) * q_2` | = | | = | |
`r_(33)=||q_3'||=sqrt((2)^2+(-2)^2+(2)^2+(-2)^2)=sqrt(16)=4` | `q_3 = 1/(||q_3'||) * q_3'` | = | `1/4 * ` | | = | |
| `Q` | `=[q_1,q_2,q_3]` | = | | `0.5` | `-0.5` | `0.5` | | | `0.5` | `0.5` | `-0.5` | | | `0.5` | `0.5` | `0.5` | | | `0.5` | `-0.5` | `-0.5` | |
|
| `R` | = | | `r_(11)` | `r_(12)` | `r_(13)` | | | `0` | `r_(22)` | `r_(23)` | | | `0` | `0` | `r_(33)` | |
| = | | `2` | `3` | `2` | | | `0` | `5` | `-2` | | | `0` | `0` | `4` | |
|
checking `Q xx R = A?` | `Q xx R` | = | | `0.5` | `-0.5` | `0.5` | | | `0.5` | `0.5` | `-0.5` | | | `0.5` | `0.5` | `0.5` | | | `0.5` | `-0.5` | `-0.5` | |
| `xx` | | `2` | `3` | `2` | | | `0` | `5` | `-2` | | | `0` | `0` | `4` | |
| = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
| and `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
Solution is possible.
|
|
|
|
|
|