|
|
Code is changed on 22.07.2025, Now it also works for Complex Number.
For wrong or incomplete solution, please submit the feedback form.
So, I will try my best to improve it soon.
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Matrix Characteristic polynomial calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]`
3. `[[3,2,4],[2,0,2],[4,2,3]]`
4. `[[1,1,1],[-1,-3,-3],[2,4,4]]`
5. `[[2,3],[4,10]]`
6. `[[5,1],[4,2]]`
|
Example1. Find Matrix Characteristic polynomial ... `[[8,-6,2],[-6,7,-4],[2,-4,3]]`Solution:`|A-lamdaI|` = | | `(8-lamda)` | `-6` | `2` | | | `-6` | `(7-lamda)` | `-4` | | | `2` | `-4` | `(3-lamda)` | |
|
`=(8-lamda)((7-lamda) × (3-lamda) - (-4) × (-4))-(-6)((-6) × (3-lamda) - (-4) × 2)+2((-6) × (-4) - (7-lamda) × 2)` `=(8-lamda)((21-10lamda+lamda^2)-16)+6((-18+6lamda)-(-8))+2(24-(14-2lamda))` `=(8-lamda)(5-10lamda+lamda^2)+6(-10+6lamda)+2(10+2lamda)` `= (40-85lamda+18lamda^2-lamda^3)+(-60+36lamda)+(20+4lamda)` `=(-lamda^3+18lamda^2-45lamda)`
|
|
|
|
|