|
|
|
|
|
|
Code is changed on 22.07.2025, Now it also works for Complex Number.
For wrong or incomplete solution, please submit the feedback form.
So, I will try my best to improve it soon.
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Transforming matrix to Row Echelon Form calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]`
3. `[[3,2,4],[2,0,2],[4,2,3]]`
4. `[[1,1,1],[-1,-3,-3],[2,4,4]]`
5. `[[2,3],[4,10]]`
6. `[[5,1],[4,2]]`
|
Example1. Find Transforming matrix to Row Echelon Form ... `[[8,-6,2],[-6,7,-4],[2,-4,3]]`Solution:Row echelon form Given matrix | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
`R_2 larr R_2+3/4xx R_1` = | | `8` | `-6` | `2` | | | `0` | `5/2` | `-5/2` | | | `2` | `-4` | `3` | |
|
`R_3 larr R_3-1/4xx R_1` = | | `8` | `-6` | `2` | | | `0` | `5/2` | `-5/2` | | | `0` | `-5/2` | `5/2` | |
|
`R_3 larr R_3+ R_2` = | | `8` | `-6` | `2` | | | `0` | `5/2` | `-5/2` | | | `0` | `0` | `0` | |
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|