| 
    
        | 
        
            |  |  
            |  |  
            |  |  
            |  |  
            | 
	
    
 
	
		
			
                    
    
        
    
    
    
    
    
        | Solution |  
        | 
            
  
  
  
  
                
                
 Solution provided by AtoZmath.com
             |  
        |  |  
			
 
    
        | Verifying if two functions are inverses of each other calculator |  
        | 1. Find Range of `f:A->B` 
  1. `f(x)=5x+2` where `A={1<=x<5}` 
  2. `f(x)=|2x+1|` where `A={x in Z}` 
  3. `f(x)=sqrt(x)` where `A={1,4,16,36}` 
  4. `f(x)=(-2)^x` where `A={x in N}` 
  5. `f(x)=(x^2+1)/(x+1)` where `A={-2,0,2}` 
 2. Composite functions and Evaluating functions
 
  1. `f(x)=2x+1`, `g(x)=x+5`. Find `fog(x)`, also evaluate at `x=2` 
  2. `f(x)=x+3`, `g(x)=x^2`. Find `gof(x)` 
  3. `f(x)=3x+1`, `g(x)=-x^2+5`. Find `gof(x)` 
  4. `f(x)=4x+1`, `g(x)=2x-3`. Find `gof(x)`, also evaluate at `x=2` 
  5. `fog(x)=(x+2)/(3x), f(x)=x-2`. Find g(2). 
  6. `gof(x)=1/x^2, f(x)=2+x^2`. Find g(x). 
 3. Find value
 
  1. `f(x)=x(x+1)(2x+1)`. Find `f(x)-f(x-1)` 
  2. `f(x)=1/x`. Find `f(x+1)-f(x-1)` 
  3. `f(x)=x^2-x`. Find `f(x+1)-f(x)` 
  4. `f(x)=x^2-2^x`. Find `f(2)-f(0)` 
  5. `f(x)=(x^2+1)/(x^3-x+1)`. Find `f(1)-f(0)` 
 4. Verifying if two functions are inverses of each other
 
  1. `f(x)=x+3,g(x)=x-3` 
  2. `f(x)=4x-3,g(x)=(x+3)/4` 
  3. `f(x)=x/(x-1),g(x)=(2x)/(2x-1)` 
 |  
        | 
 
 
 Example1. Verifying if two functions f,g are inverses of each otherf(x)=x+3. g(x)=x-3.
 
 Solution:
 Two functions f,g are inverses of each other only when 1. `f(g(x))=x` and 2. `g(f(x))=x`
 
 1. Show that f(g(x))=x
 `f(x)=x+3`
 
 `g(x)=x-3`
 
 `fog(x)=?`
 
 `f(x)=x+3, g(x)=x-3, fog(x)=?`
 
 `fog(x)=f(g(x))`
 
 `=f(x-3)`
 
 `=(x-3)+3`
 
 `=x-3+3`
 
 `=x`
 
 `fog(x)=x`
 
 2. Show that g(f(x))=x
 `f(x)=x+3, g(x)=x-3, gof(x)=?`
 
 `gof(x)=g(f(x))`
 
 `=g(x+3)`
 
 `=(x+3)-3`
 
 `=x+3-3`
 
 `=x`
 
 `gof(x)=x`
 
 Here both outputs are x, So f(x) and g(x) are inverses of each other
 |  
			
    
        | Input functions |  
        | 
    
        | Sr No. | Function | Input value |  
        | 1. | `x^3` | x^3 |  
        | 2. | `sqrt(x)` | sqrt(x) |  
        | 3. | `root(3)(x)` | root(3,x) |  
        | 4. | sin(x) | sin(x) |  
        | 5. | cos(x) | cos(x) |  
        | 6. | tan(x) | tan(x) |  
        | 7. | sec(x) | sec(x) |  
        | 8. | cosec(x) | csc(x) |  
        | 9. | cot(x) | cot(x) |  
        | 10. | `sin^(-1)(x)` | asin(x) |  
        | 11. | `cos^(-1)(x)` | acos(x) |  
        | 12. | `tan^(-1)(x)` | atan(x) |  
        | 13. | `sin^2(x)` | sin^2(x) |  
        | 14. | `log_y(x)` | log(y,x) |  
        | 15. | `log_10(x)` | log(x) |  
        | 16. | `log_e(x)` | ln(x) |  
        | 17. | `e^x` | exp(x) or e^x |  
        | 18. | `e^(2x)` | exp(2x) or e^(2x) |  
        | 19. | `oo` | inf |  |  |  
            |  |  |  |