|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
Solve numerical differential equation using Modified Euler method (1st order derivative) calculator
|
1. Find y(0.5) for `y'=-2x-y`, y(0) = -1, with step length 0.1
2. Find y(2) for `y'=(x-y)/2`, y(0) = 1, with step length 0.2
3. Find y(0.3) for `y'=-(x*y^2+y)`, y(0) = 1, with step length 0.1
4. Find y(0.2) for `y'=-y`, y(0) = 1, with step length 0.1
|
Example1. Find y(0.2) for `y'=(x-y)/2`, `x_0=0, y_0=1`, with step length 0.1 using Modified Euler method (1st order derivative) Solution:Given `y'=(x-y)/(2), y(0)=1, h=0.1, y(0.2)=?` Here, `x_0=0,y_0=1,h=0.1,x_n=0.2` `y'=(x-y)/(2)` `:. f(x,y)=(x-y)/(2)` Modified Euler method `y_(m+1)=y_m+hf(x_m+1/2 h,y_m + 1/2 hf(x_m,y_m))` `f(x_0,y_0)=f(0,1)=-0.5` `x_0+1/2 h=0+0.1/2 =0.05` `y_0 + 1/2 hf(x_0,y_0)=1+0.1/2 * -0.5=0.975` `f(x_0+1/2 h, y_0 + 1/2 hf(x_0,y_0)=f(0.05,0.975)=-0.4625` `y_1=y_0+hf(x_0+1/2 h, y_0 + 1/2 hf(x_0,y_0))=1+0.1*-0.4625=0.9538` `:.y(0.1)=0.9538`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process `f(x_1,y_1)=f(0.1,0.9538)=-0.4269` `x_1+1/2 h=0.1+0.1/2 =0.15` `y_1 + 1/2 hf(x_1,y_1)=0.9538+0.1/2 * -0.4269=0.9324` `f(x_1+1/2 h, y_1 + 1/2 hf(x_1,y_1)=f(0.15,0.9324)=-0.3912` `y_2=y_1+hf(x_1+1/2 h, y_1 + 1/2 hf(x_1,y_1))=0.9538+0.1*-0.3912=0.9146` `:.y(0.2)=0.9146` | `n` | `x_n` | `y_n` | `x_(n+1)` | `y_(n+1)` | | 0 | 0 | 1 | 0.1 | 0.9538 | | 1 | 0.1 | 0.9538 | 0.2 | 0.9146 |
|
|
Input functions
|
| Sr No. |
Function |
Input value |
| 1. |
`x^3` |
x^3 |
| 2. |
`sqrt(x)` |
sqrt(x) |
| 3. |
`root(3)(x)`
|
root(3,x)
|
| 4. |
sin(x) |
sin(x) |
| 5. |
cos(x) |
cos(x) |
| 6. |
tan(x) |
tan(x) |
| 7. |
sec(x) |
sec(x) |
| 8. |
cosec(x) |
csc(x) |
| 9. |
cot(x) |
cot(x) |
| 10. |
`sin^(-1)(x)` |
asin(x) |
| 11. |
`cos^(-1)(x)` |
acos(x) |
| 12. |
`tan^(-1)(x)` |
atan(x) |
| 13. |
`sin^2(x)` |
sin^2(x) |
| 14. |
`log_y(x)` |
log(y,x) |
| 15. |
`log_10(x)` |
log(x) |
| 16. |
`log_e(x)` |
ln(x) |
| 17. |
`e^x` |
exp(x) or e^x |
| 18. |
`e^(2x)` |
exp(2x) or e^(2x) |
| 19. |
`oo` |
inf |
|
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|