Home > Matrix Algebra calculators > Prove that any two matrix expression is equal or not calculator

Definition and examples
Matrix Algebra
Matrix Operation

Prove that any two matrix expression is equal or not calculator
Matrix A :
  
  
  1. `[[1,0,0],[0,1,0],[0,0,1]]`
  2. `[[2,3,1],[0,5,6],[1,1,2]]`
  3. `[[2,1,-1],[1,0,-1],[1,1,2]]`
  4. `[[3,1,1],[-1,2,1],[1,1,1]]`
  5. `[[5,6,1],[0,2,3],[1,1,2]]`
  6. `[[5,-1,1],[-2,3,4],[1,1,7]]`
  7. `[[2,3,-1],[3,2,1],[1,-5,3]]`
  8. `[[1,1,1],[2,-1,-1],[1,-1,1]]`
  9. `[[1,1,1],[1,2,3],[1,4,9]]`
Matrix B :
  
  
  1. `[[1,0,0],[0,1,0],[0,0,1]]`
  2. `[[2,3,1],[0,5,6],[1,1,2]]`
  3. `[[2,1,-1],[1,0,-1],[1,1,2]]`
  4. `[[3,1,1],[-1,2,1],[1,1,1]]`
  5. `[[5,6,1],[0,2,3],[1,1,2]]`
  6. `[[5,-1,1],[-2,3,4],[1,1,7]]`
  7. `[[2,3,-1],[3,2,1],[1,-5,3]]`
  8. `[[1,1,1],[2,-1,-1],[1,-1,1]]`
  9. `[[1,1,1],[1,2,3],[1,4,9]]`
Find :
  1. `(A * B)' = B' * A'`
  2. `(A * B)^-1 = B^-1 * A^-1`
  3. `Adj(A * B) = Adj(B) * Adj(A)`
  4. `A * Adj(A) = |A| * I`
  5. `Adj(A') = Adj(A)'`
  6. `(A')^-1 = (A^-1)'`
Mode :

SolutionHelp

Share with your friends
 
Copyright © 2018. All rights reserved. Terms, Privacy