Home > Matrix Algebra calculators > Prove that any two matrix expression is equal or not calculator


Definition and examples
Matrix Algebra
Matrix Operation

Prove that any two matrix expression is equal or not calculator
Matrix A :
  
  
  1. `[[1,0,0],[0,1,0],[0,0,1]]`
  2. `[[2,3,1],[0,5,6],[1,1,2]]`
  3. `[[2,1,-1],[1,0,-1],[1,1,2]]`
  4. `[[3,1,1],[-1,2,1],[1,1,1]]`
  5. `[[5,6,1],[0,2,3],[1,1,2]]`
  6. `[[5,-1,1],[-2,3,4],[1,1,7]]`
  7. `[[2,3,-1],[3,2,1],[1,-5,3]]`
  8. `[[1,1,1],[2,-1,-1],[1,-1,1]]`
  9. `[[1,1,1],[1,2,3],[1,4,9]]`
Matrix B :
  
  
  1. `[[1,0,0],[0,1,0],[0,0,1]]`
  2. `[[2,3,1],[0,5,6],[1,1,2]]`
  3. `[[2,1,-1],[1,0,-1],[1,1,2]]`
  4. `[[3,1,1],[-1,2,1],[1,1,1]]`
  5. `[[5,6,1],[0,2,3],[1,1,2]]`
  6. `[[5,-1,1],[-2,3,4],[1,1,7]]`
  7. `[[2,3,-1],[3,2,1],[1,-5,3]]`
  8. `[[1,1,1],[2,-1,-1],[1,-1,1]]`
  9. `[[1,1,1],[1,2,3],[1,4,9]]`
Find :
  1. `(A * B)' = B' * A'`
  2. `(A * B)^-1 = B^-1 * A^-1`
  3. `Adj(A * B) = Adj(B) * Adj(A)`
  4. `A * Adj(A) = |A| * I`
  5. `Adj(A') = Adj(A)'`
  6. `(A')^-1 = (A^-1)'`
Mode :

SolutionHelp

 
Copyright © 2019. All rights reserved. Terms, Privacy





We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more