Home > Numerical methods calculators > Ridder's method example

9. Ridder's method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

8. Steffensen's method
(Previous method)
2. Example-2 `f(x)=2x^3-2x-5`
(Next example)

1. Algorithm & Example-1 `f(x)=x^3-x-1`





Find a root of an equation `f(x)=x^3-x-1` using Ridder's method

Solution:
Here `x^3-x-1=0`

Let `f(x) = x^3-x-1`

Here
`x`012
`f(x)`-1-15


`x_1=1` and `x_2=2`

`f_1=-1 < 0` and `f_2= 5 > 0`


`1^(st)` iteration :

`x_3=0.5(x_1+x_2)=0.5(1+2)=1.5`

`f_3=1.5^3-1.5-1=0.875`

`s=sqrt(f_3^2-f_1*f_2)=sqrt(0.875^2-(-1)*5)=2.4012`

`x_4=x_3+-(x_3-x_1)*f_3/s`

Here, `f_1 < f_2`, So we use minus sign

`x_4=1.5-(1.5-1)*0.875/2.4012`

`x_4=1.3178`

`f_4=1.3178^3-1.3178-1=-0.0293`

As the root lies in the interval `(x_3,x_4)`, we let

`x_1=x_3=1.5` and `f_1=f_3=0.875`

`x_2=x_4=1.3178` and `f_2=f_4=-0.0293`

which are the starting point for the next iteration

`2^(nd)` iteration :

`x_3=0.5(x_1+x_2)=0.5(1.5+1.3178)=1.4089`

`f_3=1.4089^3-1.4089-1=0.3878`

`s=sqrt(f_3^2-f_1*f_2)=sqrt(0.3878^2-0.875*(-0.0293))=0.4195`

`x_4=x_3+-(x_3-x_1)*f_3/s`

Here, `f_1 > f_2`, So we use plus sign

`x_4=1.4089+(1.4089-1.5)*0.3878/0.4195`

`x_4=1.3247`

`f_4=1.3247^3-1.3247-1=0`

Approximate root of the equation `x^3-x-1=0` using Ridder's method is `1.3247` (After 2 iterations)


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



8. Steffensen's method
(Previous method)
2. Example-2 `f(x)=2x^3-2x-5`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2023. All rights reserved. Terms, Privacy
 
 

.