


Method and examples


Arithmetic Progression 



Problem 11 of 19 


11. The ratio of two arithemetic progression series is : , then find the ratio of their th term.










Solution 
Solution provided by AtoZmath.com


Want to know about

This is demo example. Please click on Find button and solution will be displayed in Solution tab (step by step)
Arithmetic Progression 
11. The ratio of two arithemetic progression series is 3x+5 : 4x2 , then find the ratio of their 10 th term.
Let two series be `a, a+d, a+2d, ...` and `A, A+D, A+2D, ...`
Now, `S_n / S_(n') = (3x+5) / (4x2)`
`=> (n/2 [2a + (n  1)d]) / (n/2 [2A + (n  1)D]) = (3x+5) / (4x2)`
`=> [2a + (n  1)d] / [2A + (n  1)D] = (3x+5) / (4x2) >(1)`
We know that, `f(n) = a + (n  1)d`
`f(n)/(F(n)) = [a + (n  1)d] / [A + (n  1)D]`
`=> f(10)/(F(10)) = [a + (10  1)d] / [A + (10  1)D]`
`=> f(10)/(F(10)) = [a + 9d] / [A + 9D]`
`=> f(10)/(F(10)) = [2a + 18d] / [2A + 18D] >(2)`
Using `(1)` and `(2)`, it is clear that if we put `n = 19` in `(1)` we get the ratio of `(2)`
`=> f(10)/(F(10)) = [2a + 18d] / [2A + 18D]`
`=> f(10)/(F(10)) = (3x+5) / (4x2),` where `n=19`
`=> f(10)/(F(10)) = 62 / 74`
`=> f(10)/(F(10)) = 31/37`







