


Method and examples


Arithmetic Progression 



Problem 8 of 19 


8. For arithemetic progression addition of first terms is and addition of first terms is , then find addition of first terms.










Solution 
Solution provided by AtoZmath.com


Want to know about

This is demo example. Please click on Find button and solution will be displayed in Solution tab (step by step)
Arithmetic Progression 
8. For arithemetic progression addition of first 17 terms is 24 and addition of first 24 terms is 17 , then find addition of first 41 terms.
We know that, `S_n = n/2 [2a + (n  1)d]`
`S_17 = 17/2 * [2a + (17  1)d] = 24`
`=> 17/2 * [2a + 16d] = 24`
`=> 2a + 16 d = 2.8235 >(1)`
We know that, `S_n = n/2 [2a + (n  1)d]`
`S_24 = 24/2 * [2a + (24  1)d] = 17`
`=> 24/2 * [a + 23d] = 17`
`=> 2a + 23d = 1.4167 >(2)`
Solving `7 d = 1.4069`
`=> d = 0.201`
From `(1) => 2a + 16d = 2.8235`
`=> 2a = 2.8235  16d`
`=> 2a = 2.8235  16 × 0.201`
`=> 2a = 2.8235  3.2157`
`=> 2a = 6.0392`
`=> a = 3.0196`
We know that, `S_n = n/2 [2a + (n  1)d]`
`:. S_41 = 41/2 * [2(3.0196) + (41  1)(0.201)]`
`= 41/2 * [6.0392 + (8.0392)]`
`= 41/2 × 2`
`= 41`







